Procopios Constantinou

University College London


Research Project: Studying and manipulating the quantum properties of atomic-scale defects in silicon for future device applications
Steven Schofield (UCL), Gabriel Aeppli (PSI)

Procopios recently graduated from Cardiff University with an MPhys in Physics. His research interests have always been broadly associated with condensed matter physics, with his most recent work focussing on modelling convergent beam low-energy electron diffraction (CBLEED) to simulate the different surface phase transitions of Si(001). This work was performed at Cardiff University under the supervision of Professor Jesson. Further to this work, Procopios has become intrigued in the methods used to fabricate and study novel structures based on Si for their potential use in future devices. His work in the CDT-ACM involves the exploitation of defects in Si to fabricate and study quantum systems with novel electronic, optical and magnetic properties. Using the scanning tunnelling microscope (STM) hydrogen resist technique, small quantum defect structures from dopant atoms will be buried below a Si surface by exploiting arrays of 1D and 2D dangling bonds on the depassivated regions of silicon. The atomic scale interactions taking place within these structures will then be investigated by using scanning tunnelling spectroscopy (STS) and Angle-Resolved Photoemission Spectroscopy (ARPES) measurements in the hope of developing new routes for nanoscale device fabrication on Si.